

Measuring intangibles at scale &

Report on experimental development of the Cloud Computing Services Producer Price Jean-Philippe Tardif, Statistics Canada

Delivering insight through data for a better Canada

Why measure this industry?

- Overall importance of digital economy cannot be ignored:
 - 39% of Canadian businesses used cloud computing in 2019 (Statistics Canada Daily, Monday November 23, 2020)
 - Cloud spending as share of total IT spending projected to grow to 14.2 % in 2021, up from 9.1% in 2020 (Gartner, 2020)
 - COVID-19 pandemic and increase preference for remote working will increase the importance of the cloud for Canadian enterprises
- Currently Informatics Professional Services Price Indexes capture this industry to the extent that CSP are in an in-scope NAICS (Data hosting, Software Publishing, Computer Systems Design)
- Experimental index covering new sector in hopes of eventually deflating the industry

Fundamental questions that helped determine the scope and process

- Sample & Basket selection: where to start?
- Data collection of large, heterogeneous datasets: how do we make this efficient?
- "in the cloud" vs. "the cloud"
 - Software like Office 365, Gmail, Teams are pure "SaaS", whereas Cloud Computing is the rentable infrastructure behind it, so where to draw the line?
- How should the service be quality adjusted?
 - Some collected information are quality measures, but how should it be used when adjusting the prices?

Scope & Methodology

- Sample targets "hyperscalers" with data centers in Canada
- Aim to cover laaS, PaaS and SysSaaS sectors, in contrast to existing price index literature on the industry focusing primarily on the laaS component
 - laaS has a more stable set of characteristics than SaaS which complicates the price index calculation
- Use industry revenue data and iterative analysis of company product offerings to determine most relevant products for basket formation

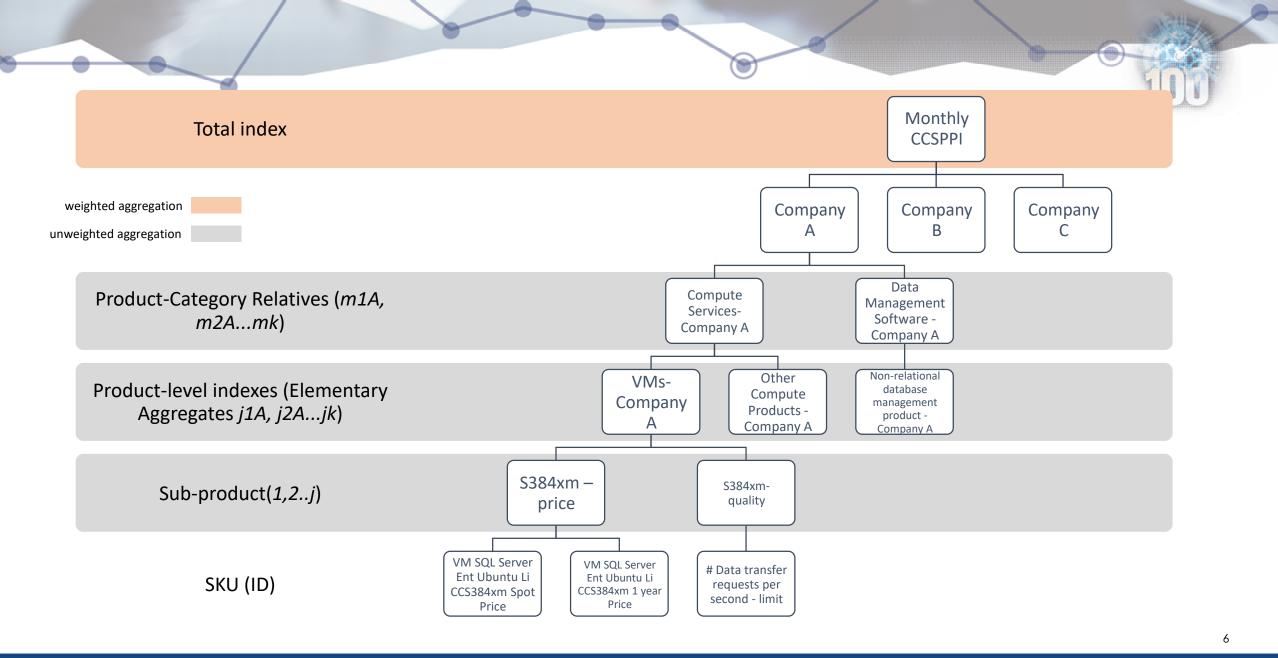
"Why don't you just measure a typical bill over time?"

 Multitude of possible billing combinations may lead to bias; treating sub-products under a Jevons requires weaker prior knowledge to proceed with making an index

Concept: Prices & Quality measures

- Pricing pages contain two types of variables: Prices & Quality measures
- Prices can be understood conventionally
- Examples of Quality measures:
 - Allowable memory usage
 - Number of transactions/queries (Service quotas)
 - Computing power
 - Dimensions of a virtual machine
- More generally, the guiding principle for classification during data collection:
 - If the number is positively correlated with overall price of the product, then classify as price, otherwise the data point is a "quality" of the service
- Log-transformation of qualities + US-CAD exchange where necessary

Processing



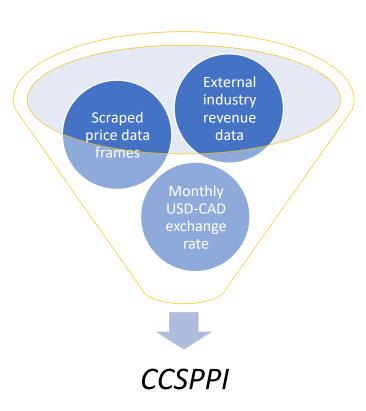
Parsing & Assignment

Formatted data frames for each CSP

- Approximately 200 products, with +300 sheets of product information collected
 - API utilization/HTML scraping is the predominant method currently to collect data
- Only the most representative products are selected to create a 'basket' for each CSP
- Each selected product is scanned and catalogued; every sub-product is tracked over time

Estimation

Instead of taking the geometric average of price-type indexes & quality-type indexes, both are multiplied as a form of quality-adjustment, such that the price index *I* for product *j* and CSP *k is:*


$$I_{k}^{j} = \prod_{i=1}^{n} \left(\frac{p_{ik1}}{p_{ik0}}\right)^{\frac{1}{n}} \prod_{g=1}^{m} \left(\frac{q_{gk0}}{q_{gk1}}\right)^{\frac{1}{m}}$$

- Each product index is grouped according to product-category by geometric average, where things are generally comparable
- At product-category level, weights are applied by company, and aggregated via arithmetic average:

$$CSPPIMonthlyRelative = \sum_{k} \sum_{m} w_k^m * ProductCategoryRelative_k^m$$


where w_k^m is the relative importance for product category m and CSP k.

Currently, basket duration is two years, and index frequency is quarterly

Quarterly Index Results

Total	Products showing	Total products	Total products	Total products	
number of	an index change	showing a quality	showing a price	showing overall	Reference
products	(excluding VMs)	change	change	index change	Period
6	4	3	5	6	2020 Q1
7	5	3	5	7	2020 Q2
6	5	3	5	6	2020 Q3
6	4	3	5	6	2020 Q4
10	8	2	8	10	2021 Q1

- Where needed, ensure index structure is adaptable to industry changes
- Continue preliminary discussions with Canadian System of Macroeconomic Accounts to determine proper use in deflation of digital economy
- Continually integrate new CSP with diverse pricing models; fine-tune collection techniques where possible
- Evaluate overlap with existing price indexes for overlapping industries

10